第四十九章 奥数预赛(二)[第2页/共2页]
一公例百通!
但再令人目炫狼籍的题型,都必然有破题的关头点,就像被拧成一团乱麻的丝线,看似无从动手,但只要找到线头,顺藤摸瓜下去就必然能解开这团乱麻。
胡劲松,另有他的主子矮瘦子蔡明伦。
固然另有将近非常钟,但张伟明白,本身的初赛已经提早结束了。
抛开第二小问的滋扰,第一小问要求证明直线MN恒过一点,证明过程的重点就在A、M、N三个点上无疑。
在某些方面,数学题的解答与修道有异曲同工之妙,固然二者看似别离代表“科学”与“科学”的两个极度,但二者却都要求人得有“悟性”――数学悟了能解数学题,修道悟了能解天意。
先设A、N、M三个点的坐标为A(x。,y。),M(x?,y?),N(x?,y?),把能够得出的信息先一一列举,包含动点A与X轴和Y轴订交的坐标、直线AM和AN的切线方程式等。
固然从性价比上来讲,在有限的时候内完整的解出倒数第二题,要比仅仅解出最后一题的第一小问的性价比更高。
当然,即便明白做不出压轴题的第二小问,但张伟也没有就此放弃,他还是把本身从第一小问得出的定点,代入第二小问尝试着解答――这也是数学解答题的“潜法则”,如果一道题有两问或两问以上,前一问的答案常常是后一问的解题前提。
张伟现在还解不了天意,不过他已经肯定能够解了这半道数学题了!
这应当不是甚么偶合吧......
(1)证明直线MN恒过必然点;
y。y?=4(x。+x?),申明直线y。y=4(x。+x)恒过点M(x?,y?),同理可证直线y。y=4(x。+x)恒过点N(x?,y?),则直线MN的方程为y。y=4(x。+x)......
AM的切线方程:yy?=4(x+x?),又AM过动点A(x。,y。),得出结论y。y?=4(x。+x?)!
正式基于以上考虑,以是张伟才大胆的决定放弃填空题,把最后的半个小时留给解答题!他不希冀能给出完整的解答,只要能给出部分精确的推理过程,一样能够拿分!
张伟疯了吗?答案当然是否定的!
最后部分的证明已经跃然纸上:x。=2y。-13,代入y。y=4(x。+x)中,得出y。(y-8)=4(x-13).以是直线MN恒过定点(13.8).
关头,就是要找到破题的“线头”!
(2)证明△ABC的外接圆恒国必然点,并求该圆半径的最小值。
当张伟将直线AM和AN的方程式列举出来的时候,他很快就发明了题目的关头点!