第24章 虫洞和时间旅行(1)[第1页/共3页]
1949年库尔特・哥德尔发明了广义相对论答应的新的时空。这初次表白物理学定律的确答应人们在时候里观光。哥德尔是一名数学家,他因为证了然不完整性定理而名震天下。该定理是说,不成能证明统统真的陈述,即便你只试图证明像算术这么明白并且古板的学科中统统真的陈述。这个定理或许是我们了解和预言宇宙才气的根基极限,但是起码迄今为止,它仿佛还未成为我们寻求完整同一实际的停滞。
在当天方才解缆,
这已被尝试很好地查验过。人们以为,即便用更初级的实际去代替相对论,它仍然会被作为一个特性保存下来。
但是,还能够有体例。人们或答应以把时空卷曲起来,使得A和B之间有一近路。在A和B之间创生一个虫洞就是一个别例。顾名思义,虫洞就是一个时空细管,它能把两个相隔悠远的几近平坦的地区连接起来。
关头在于相对论以为不存在让统统察看者同意的唯一的时候测量。相反,每位察看者各有本身的时候测量。如果一枚火箭能以低于光的速率处置务A(比方2012年奥林匹克比赛的100米决赛)至事件B(比方半人马座α议会第100004届集会的揭幕式),那么按照统统察看者的时候,他们都同意事件A产生于事件B之先。但是,假定飞船必须以超越光的速率观光才气把比赛的动静送到议会。那么,以分歧速率活动的察看者关于事件A和事件B何为前何为后就众说纷繁。遵循一名相对于地球静止的察看者的时候,议会揭幕或许是在比赛以后。如许,这位察看者会以为,如果他不睬光速限定的话,该飞船能及时地从A赶到B。但是,在半人马座α上以靠近光速在分开地球方向飞翔的察看者就会感觉事件B即议会揭幕,先于事件A即百米决赛产生。相对论奉告我们,对于以分歧速率活动的察看者,物理定律是完整不异的。
却已在前晚达到。
她能行走得比光还快。
如许题目就变成:如果宇宙初始就没偶然候观光必须的曲率,我们可否随后把时空的部分地区卷曲到这类程度,直至答应时候观光?
虫洞两个端点之间在几近平坦的背景里的分离和通过虫洞本身的间隔之间没需求有甚么干系。如许,人们能够想像,他能够缔造或者找到一个从太阳系四周通到半人马座α的虫洞。固然在凡是的空间中地球和半人马座α相隔20万亿英里,而通过虫洞的间隔却只要几百万英里。这就答应百米决赛的动静赶在议会揭幕式前达到。然后一名往地球飞去的察看者也应当能找到另一个虫洞,使他从半人马座α议会揭幕在赛事之前回到地球。如许,虫洞正和其他能够的超光速观光体例一样,答应人们逆时观光。
为甚么无序度增加,并且我们记着畴昔而非将来。时候仿佛是一条笔挺的铁轨,人们只能往一个方向进步。
那么,时候观光的远景如何呢?
她以相对性的体例,
时空分歧地区之间的虫洞的思惟并非科学胡想作家的发明,它的发源是非常令人尊敬的。
这导致一个附加的效应,一名航天员能够在他乘航天飞船解缆之前即已回到地球。这本性子使爱因斯坦非常懊丧,他曾经觉得广义相对论不答应时候观光。但是,鉴于爱因斯坦对引力坍缩和不肯定性道理的无端反对,这或许反而是一个令人鼓励的迹象。因为我们能够证明,我们保存此中的宇宙是不扭转的,以是哥德尔找到的解并不对应于它。它另有一个非零的宇宙常数。宇宙常数是当爱因斯坦觉得宇宙是稳定时引进的。在哈勃发明了宇宙的收缩后,就不再需求宇宙常数,而现在遍及以为它应为零。但是,以后从广义相对论又找到其他一些更公道的时空,它们答应观光到畴昔。此中之一便是扭转黑洞的内部。别的一种是包含两根快速相互穿越的宇宙弦的时空。顾名思义,宇宙弦是弦状的物体,它具有长度,但是截面很藐小。实际上,它们更像在庞大张力下的橡皮筋,其张力约莫为1亿亿亿吨。把一根宇宙弦系到地球上,就会把地球在1/30秒的时候里从每小时零英里加快到每小时60英里。宇宙弦初听起来像是科学胡想物,但有来由信赖,在初期宇宙中由在第五章会商过的那种对称破缺机制能够构成宇宙弦。因为宇宙弦具有庞大的张力,并且能够从任何形状肇端,以是它们一旦伸展开来,就会加快到非常高的速率。