第13章 黑洞(1)[第4页/共5页]
朗道指出,恒星还存在另一种能够的终态。其极限质量约莫也为太阳质量的一倍或二倍,但是其体积乃至比白矮星还小很多。这些恒星是由中子和质子之间,而不是电子之间的不相容道理架空力支撑的。以是它们叫做中子星。它们的半径只要10英里摆布,密度为每立方英寸几亿吨。在第一次预言中子星时,没有任何体例去察看它。
他指出,一个质量充足大并充足致密的恒星会有如此强大的引力场,乃至连光芒都不能逃逸:任何从恒星大要收回的光,在还没达到远处前就会被恒星的引力吸引返来。米歇尔表示,能够存在大量如许的恒星,固然因为从它们那边收回的光不会达到我们这里,我们不能看到它们;但是我们仍然能够感到它们引力的吸引。这恰是我们现在称为黑洞的物体。它是名副实在的――在空间中的黑的浮泛。
昌德拉塞卡指出,不相容道理不能够禁止质量大于昌德拉塞卡极限的恒星产生坍缩。但是,按照广义相对论,如许的恒星会产生甚么环境呢?1939年一名美国的年青人罗伯特・奥本海默初次处理了这个题目。但是,他所获得的成果表白,用当时的望远镜去检测不会有任何观察成果。今后,第二次天下大战插入,奥本海默本人非常用心肠处置原枪弹研制。战后,因为大部分科学家被吸引到原子和原子核标准的物理中去,因此大部分人健忘了引力坍缩的题目。但在20世纪60年代,当代技术的利用使得天文观察范围和数量大大增加,这重新激起人们对天文学和宇宙学的大标准题目的兴趣。奥本海默的事情被一些人重新发明并推行。
1783年,剑桥的学监约翰・米歇尔在这个假定的根本上,于《伦敦皇家学会哲学学报》上颁发了一篇文章。
1928年,一名印度研讨生――萨拉玛尼安・昌德拉塞卡――乘船来英国剑桥跟英国天文学家兼广义相对论家阿瑟・爱丁顿爵士学习。(据记录,在20世纪20年代初,有一名记者奉告爱丁顿,说他传闻天下上只要三小我能了解广义相对论。爱丁顿停顿了一下,然后答复:“我正在想这第三小我是谁?”)在从印度来英国的旅途中,昌德拉塞卡算出了在耗尽统统燃料以后,多大的恒星仍然能够对抗本身的引力而保持本身。这个思惟是说:当恒星变小时,物质粒子相互