第二十七章 尘埃落定[第2页/共3页]
而又过了些时候,万象刀法的招数已经快用完,两大刀魂仿佛感到到了甚么,覆盖在独木桥外周的阴魂变得浓烈起来,形状变幻不竭,如疯如狂。
终究,招数用到了头。封敌下一招不自发地使出了之前用过的招数,却未曾想司徒岱竟然也使出了和上一招一模一样的一招!封敌但觉头晕脑胀,无数游魂仿佛穿脑而过,就仿佛势难反对的大水在他的脑海中残虐!炸裂之感。
封敌黑刀横格胸前,摆出了万象刀法的起手式,而司徒岱的第一招则直接攻了过来。
他觉得本身要完了,却未曾想司徒岱的行动在同一时候也变得迟滞,神采痛苦不堪。
对于一招连城和迭代刀法,这两招高深莫测的刀法,当时的人是没法了解的。江湖上传播的武功秘笈,门派典藏,都是以儒道法家的精华作为根底,但刀神畏死的刀招根底,倒是数学。没有人晓得畏死的来源,也没有人晓得他的数学。
这些启事,小秀预先并没有和封敌参议。其一,时候不敷;其二,这些事理,小秀也不知为何本身能够想明白,她也晓得此中道理这个世上恐怕再没有多少人能晓得。以是,她只是暗中帮忙着封敌,经心全意地但愿仆人能够胜出。
智者的这个解法,开导了聪明的小秀。
有这么一道方程x^3-x-1=0,关于它的一种解法称为迭代法。迭代法的道理是将方程转化成x=g(x)的情势,然后令x(k+1)=g(xk)”。令x1即是一个靠近方程的解的数,求得x2,再将x2代入求得x3;倘若原方程有解,那么函数g(x)必定存在一个不动点,也即当k迭代至某个值时,xk=xk+1,当时将有xk+1=g(xk)=g(xk+1),也即xk就是方程x=g(x)的解。迭代法实际上实在可行,但实际应用时,我们将原方程转换为x=x^3-1,即获得的迭代方程是g(x)=x^3-1,;按照实际,通过有限次的迭代,应当能找到此方程的不动点。但是,我却始终没有找到这个不动点。迭代法解方程的实际没题目,我将原方程转化成迭代方程的过程是等价的,现在原方程有解但迭代方程却找不到不动点,是为冲突。
小秀并不晓得,为何司徒家的迭代刀法暗合迭代方程,她只是实在地归纳笼统出刀招背后的数学道理。实际上,迭代刀法有无穷多招数,也能够说只要一招。这一招,不是一个死招,而是一个活招,这一招就是一个方程,一个转化的原则,将上一招转化成下一招的体例。本来,这一招明显是一个能够无穷迭代的方程,以是招数会无穷无尽。而智者给小秀的提示是:当天下少了一条线,迭代的绝顶终有一个恒定稳定的点。那么,如果对施招的司徒岱停止维度的限定,本来无穷迭代的刀法,是否会变得有限?这就是小秀想到的破解迭代刀法的体例!